You are here

An Ultra-Lightweight, High Performance Carbon-Carbon Space Radiator

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNC04CA03C
Agency Tracking Number: 023005
Amount: $598,926.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: H3.07
Solicitation Number: N/A
Timeline
Solicitation Year: 2002
Award Year: 2004
Award Start Date (Proposal Award Date): 2003-12-01
Award End Date (Contract End Date): 2005-12-01
Small Business Information
209 Puente Ave.
City of Industry, CA 91746-2304
United States
DUNS: 000000000
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: Yes
Principal Investigator
 William Miller
 Principal Investigator
 (626) 369-1273
 bill.miller@allcomp.net
Business Contact
 William Miller
Title: Vice-President
Phone: (626) 369-1273
Email: bill.miller@allcomp.net
Research Institution
N/A
Abstract

Our research program is focused on achieving high thermal performance in a high temperature carbon-carbon (C-C) radiator especially designed to fulfill present and future challenges in outer space applications. The radiator is one of the key parts in heat rejection systems, in both power conversion technologies for solar and space nuclear electric propulsion. An advanced radiator must provide high thermal performance with minimum mass while satisfying launch and deployment considerations. Traditional metal based radiators and single phase pumped heat transport loops are inadequate for the emerging demands; metal based high temperature radiators usually are over 8 ~ 10kg/m2. C-C composite materials are ideal candidates to solve this challenge because of their series of advantages, such as very low density, high thermal conductivity, good mechanical properties, high flexibility and variability in thermal and structural properties by tailoring their composite constituents. In combination with heat pipes, two-phase Capillary Pumped Loops (CPL) and Loop Heat Pipes (LHP) or other two-phase heat transport loops, overall thermal performance and reliability of the space radiators can be significantly improved and realized by reducing radiator mass, which is a big portion of overall spacecraft mass.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government