You are here

High Resolution Mammography Sensor

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 2R44CA099104-03A1
Agency Tracking Number: CA099104
Amount: $977,915.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Timeline
Solicitation Year: 2008
Award Year: 2008
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
44 Hunt Street
Watertown, MA 02472
United States
DUNS: 073804411
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 MICHAEL SQUILLANTE
 (617) 668-6808
 MSQUILLANTE@RMDINC.COM
Business Contact
Phone: (617) 668-6801
Email: gentine@rmdinc.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): Radiation Monitoring Devices ( RMD') is developing a digital radiographic imaging technology that is based upon a semiconductor x-ray receptor. The more specific, targeted application is mammographic imaging (including
breast tomosynthesis) for which the benefits of this technology will later be described. At the core of this research, RMD is developing the process for creating direct imaging' x-ray detectors fabricated from polycrystalline layers of the semiconductor m
ercuric iodide (HgI2). A significant part of this work will involve tailoring the electrical, chemical and physical properties of these layers for the intended purpose. To utilize HgI2 as an x-ray receptor, it must be coupled with an amorphous silicon (a-S
i) thin film transistor (TFT) array. The TFT array provides pixelation, charge storage and frame readout necessary to form a complete imager. In order to enable digital mammography to achieve its full potential and thereby, have a major clinical impact, x-
ray detection technology needs to be advanced. RMD is investigating a direct' detection method using mercuric iodide (HgI2) as the x-ray detector. The HgI2 film acts as the sensor, detecting the incoming x-rays with high quantum efficiency due to its high
x-ray stopping power. The detected x-ray image is converted directly into an electronic charge image due to the formation of electron-hole pairs in HgI2. Due to efficient collection of these charges with minimal lateral spreading, this approach does not s
uffer from the light spreading effects observed in phosphors and thereby, provides high detection efficiency as well as high spatial resolution. HgI2 has nearly ideal characteristics for mammography such as high stopping efficiency, large gain, good charge
transport, and good stability. Finally, the method by which RMD is proposing to deposit the HgI2 films is highly cost effective and can be used to readily cover large areas, making it very complimentary to the large sized a-Si:H TFT arrays that are increa
singly becoming available. RMD plans to deposit and test the key HgI2 layers on two types of substrates: 1) simple conductive plates for testing electrical bulk properties, and 2) a range of a-Si TFT arrays that will provide the key imaging data. RMD will
perform all the fabrication tasks associated with the layers and conduct most evaluations on the simpler devices. To aid with the a-Si TFT tasks, RMD has joined with two collaborators Varian Medical Systems and the University of Michigan to provide mater
ials and expertise with testing. Dr. Mitchell Goodsitt of the University of Michigan has joined our team to provide guidance on the specific imaging requirements for high resolution mammography and digital breast tomosynthesis (DBT). Dr. Daniel Kopans and
Richard Moore of MGH have also joined our team as clinical consultants. Dr. Kopans and Richard Moore are specialists in mammography and DBT and will provide guidance and input on clinical goals and evaluate our imagers under conditions applicable to digita
l mammography and DBT. PUBLIC HEALTH RELEVANCE: RMD is proposing to develop a new type of mammography x-ray detector that holds the promise of very high spatial resolution and superior images at low exposure levels. The proposed fabrication technique is bo
th cost effective and readily scaleable, both helping to remove manufacturing barriers that can impede adoption of technology.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government