You are here

High-Efficiency, Radiation-Hard, Lightweight IMM Solar Cells

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX14CC62P
Agency Tracking Number: 144764
Amount: $123,567.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: S3.01
Solicitation Number: N/A
Timeline
Solicitation Year: 2014
Award Year: 2014
Award Start Date (Proposal Award Date): 2014-06-20
Award End Date (Contract End Date): 2014-12-19
Small Business Information
6457 Howard Street
Niles, IL 60714-3301
United States
DUNS: 135553472
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Rao Tatavarti
 Technical Director
 (847) 588-3001
 rtatavarti@mldevices.com
Business Contact
 Noren Pan
Title: Business Official
Phone: (847) 588-3001
Email: npan@mldevices.com
Research Institution
 Stub
Abstract

Future NASA exploration missions require high specific power (>500 W/kg) solar arrays. To increase cell efficiency while reducing weight and maintaining structural integrity, we propose an approach to cell design that involves the use of quantum dots and epitaxial lift-off. In the near term, this approach will allow us to improve on what are currently the best space solar cells available in terms of efficiency and material properties for space utilization. In the proposed Phase I project, MicroLink and its collaborator, Rochester Institute of Technology, will incorporate InAs quantum dots (QDs) in the InGaAs subcell of an InGaP/GaAs/InGaAs triple-junction solar cell to increase radiation tolerance and efficiency, thereby improving end-of-life performance of the solar cell by >5%. By incorporating quantum dots into the InGaAs third cell, we will also extend the wavelength absorption range of InGaAs cell to beyond 1,250 nm, thereby increasing the current produced in the bottom subcell. The quantum dot-enhanced subcell will be the last grown solar cell in an inverted metamorphic (IMM) format on GaAs and will be compatible with MicroLink's epitaxial lift-off (ELO) process. Innovative light management techniques such as reflective metal back contact will be employed to increase absorption in the solar cell by promoting photon recycling.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government