You are here

Fire Suppressant Transport Modeling

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA2487-14-C-0203
Agency Tracking Number: F121-197-0845
Amount: $749,988.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: AF121-197
Solicitation Number: 2012.1
Timeline
Solicitation Year: 2012
Award Year: 2014
Award Start Date (Proposal Award Date): 2014-06-24
Award End Date (Contract End Date): 2016-06-23
Small Business Information
8100 Shaffer Parkway Suite #130
Littleton, CO 80127-4107
United States
DUNS: 000000000
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Thierry Carriere
 Technology Director
 (303) 792-5615
 thierryc@adatech.com
Business Contact
 James Budimlya
Title: President&CEO
Phone: (303) 792-5615
Email: jim.budimlya@adatech.com
Research Institution
N/A
Abstract

ABSTRACT: Fires initiating in engine nacelles and dry bays are the most common causes of loss of aircraft. However, since the Montreal Protocol restricting the production of Halons, a replacement has not yet been accepted by the aircraft survivability community despite numerous testing programs. The costs and limitations of designing new systems based primarily on live fire testing can be mitigated by modeling. In this Phase II project, ADA Technologies is partnering with Fire Science NM and SURVICE Engineering to develop, validate and implement a fast-running, physics-based, computational fluid dynamics (CFD) code for mapping the concentration of clean agent fire suppressants in obstructed environments such as dry bays. At the core of the simplified approach is the focus on the low-Mach number equations, describing phenomenon happening in the subsonic regime, such as the dispersion of fire suppressant. The Phase I preliminary model demonstrated the required speed and accuracy. In Phase II, the code will be further streamlined and thoroughly validated against full-scale test data. Finally, the code will be converted to a module and integrated into the FPM (Fire Prediction Model) platform for use by the DoD survivability community. BENEFIT: A fast-running CFD code modeling the dispersion of Halon replacements, also known as clean agents, would allow optimization of new fire suppression designs by minimizing the amount of suppressant to be carried on-board an aircraft while ensuring satisfactory extinguishment performance. Limiting weight is always a primary concern in aircraft applications. Finding an effective and environmentally friendly replacement for Halon 1301 for dry bay and engine nacelles would be greatly aided by such a validated CFD code. This code would be applicable to a variety of fire suppression applications looking for optimized Halon replacement systems. DOD markets include a variety of new and retrofit applications linked under the joint aircraft survivability program. Beyond military aircraft, commercial aircraft is another natural fit for the code, as airframers are facing the same issue for engine nacelle and APU protection. Finally, weight and cost optimization of fire suppression systems of other, non-aerospace obstructed volumes is another commercialization opportunity. For examples, light armored vehicles in the DOD market and server rooms in the commercial sector represent promising business prospects for the future code.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government