You are here

Efficient Computational Tool for RF-Induced Thermal Response

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-14-C-6513
Agency Tracking Number: F121-032-0948
Amount: $749,783.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: AF121-032
Solicitation Number: 2012.1
Timeline
Solicitation Year: 2012
Award Year: 2014
Award Start Date (Proposal Award Date): 2013-11-13
Award End Date (Contract End Date): 2016-03-01
Small Business Information
23440 Airpark Blvd P.O. Box 66
Calumet, MI 49913-0066
United States
DUNS: 000000000
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Al Curran
 Chief Technology Officer
 (906) 482-9560
 arc@thermoanalytics.com
Business Contact
 Eric Nielsen
Title: Chief Operating Officer
Phone: (906) 482-9560
Email: ekn@thermoanalytics.com
Research Institution
N/A
Abstract

ABSTRACT: The ThermoReg thermal model was developed to solve for tissue temperatures resulting from radio frequency (RF) heating using a voxel-based, heterogeneous tissue description of the human body. Although ThermoReg has been parallelized to run on high-performance computer clusters, the time-dependent nature of a thermal solution (especially for tissue temperatures resulting from high-power, short duration RF exposures) can lead to excessive run times that subsequently limit the extent to which parametric studies can be conducted. We propose a set of tasks that will be accomplished by implementing solution techniques that take advantage of the massive parallelism that is provided by modern GPUs, improving the underlying thermo-physiology model and by implementing techniques that reduce run-times by reducing model fidelity when appropriate. The performance of these tasks will result in software and associated work flows that will demonstrate substantial decreases in run-time while maintaining model fidelity. In addition, the accuracy, applicability and lifetime of the ThermoReg software will be greatly extended. BENEFIT: The product of this SBIR will be a valuable tool for existing DOD activities directed at: 1) establishing health effects and safety standards for exposure to electromagnetic fields; 2) development of non-lethal weapons; and 3) evaluating human thermal comfort and health risks in extreme environments across a population of people. We have successfully marketed the use of human thermal models in a number of areas: Automotive and aircraft passenger thermal comfort and safety models; heating, ventilation, and air conditioning (HVAC) designs for vehicles and buildings; protective clothing design; and optimization of garment designs for thermal safety and comfort. The result of this SBIR will be a substantial reduction in run-times allowing potential customers to examine larger design spaces in the application areas listed above.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government