You are here

SBIR Phase I: Moving Magnet Actuators for Nanopositioning

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1248327
Agency Tracking Number: 1248327
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NM
Solicitation Number: N/A
Timeline
Solicitation Year: 2012
Award Year: 2013
Award Start Date (Proposal Award Date): 2013-01-01
Award End Date (Contract End Date): 2013-12-31
Small Business Information
1600 Huron Parkway Building 520, 2nd floor
Ann Arbor, MI 48109-5001
United States
DUNS: 968206057
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Gaurav Parmar
 (734) 972-3790
 gaurav@hipernap.com
Business Contact
 Gaurav Parmar
Phone: (734) 972-3790
Email: gaurav@hipernap.com
Research Institution
 Stub
Abstract

This Small Business Innovation Research Phase I project aims to establish the feasibility of a novel moving magnet actuator (MMA) concept that holds potential to simultaneously provide up to 10 millimeter stroke, nanometric motion quality, and high scanning speeds in flexure-based nanopositioning systems. Nanopositioning systems are employed in all scanning probe lithography and microscopy techniques to provide the relative motion between the probe and substrate. However, lack of appropriate actuation technology is one of the primary factors that currently limit the motion range of existing nanopositioning systems to approximately 100 microns per axis, which in turn limits the "workspace" of current scanning probe techniques. To meet the above-stated requirements of stroke, speed, and motion quality, a novel moving magnet actuator concept is proposed which overcomes the limitations associated with traditional MMAs. The innovative use of radial permanent magnets and concentric coils reduces the moving mass, decreases fringing of the flux in the air-gap to provide greater force output, and improves thermal management via use of integrated heat-pipes. In this project, a systematic multi-domain modeling and design framework that includes closed-form and computational analyses will be employed to evaluate and optimize the proposed MMA's performance. The broader impact/commercial potential of this project is to enable the scale-up of scanning probe lithography and microscopy techniques and enable their use in practical industrial settings. The proposed MMA technology, if successfully demonstrated in Phase I, will provide higher output force while maintaining small moving mass and power consumption, along with better heat dissipation. This, in turn, will enable unprecedented nanopositioning systems, with 10,000-fold larger workspace compared to competing products, at the end of Phase II. These large-range nanopositioning systems will have a transformative impact on direct-write nanomanufacturing techniques such as dip-pen, electron-beam, and focused ion-beam lithography. While these techniques have been used to fabricate optical metamaterials, thermoelectric devices, and diffraction gratings that have shown remarkable physical properties, large-area patterning capability is necessary to scale up these techniques for practical nanomanufacturing. This project will also create an educational impact via partnership with the University of Michigan that will facilitate the training of students.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government