USA flag logo/image

An Official Website of the United States Government

Novel Nanorods for High Efficiency Medical Imaging Applications

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
Program Year/Program:
2013 / SBIR
Agency Tracking Number:
R44EB017606
Solicitation Year:
2013
Solicitation Topic Code:
NIBIB
Solicitation Number:
PA12-088
Small Business Information
PHOSPHORTECH
351 THORNTON RD, STE 130 LITHIA SPRINGS, GA 30122-4118
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2013
Title: Novel Nanorods for High Efficiency Medical Imaging Applications
Agency: HHS
Contract: 9R44EB017606-02
Award Amount: $928,243.00
 

Abstract:

DESCRIPTION (provided by applicant): This Phase II SBIR proposal aims at the continued development and commercialization of a new class of high-performance X-ray imaging screens based on the recently developed core/shell nanorod (NR) and nano-tetrapods (NTs) structures. These multi-dimensional nanocrystalline (NC) structures can be easily embedded with high densities in transparent polymer matrices. They will have wide ranging applications in digital radiography, mammography, tomography, protein crystallography, as well as a various large-area radiation imaging and detection applications, never before possible using conventional scintillators. The goals of Phase I were successfully achieved and we have demonstrated the potential for high spatial resolution,very fast time response, no afterglow, no self-absorption, and good X-ray conversion efficiency. The nano- composite scintillators were prepared and tested independently by both PhosphorTech and Radiation Monitoring Devices (RMD) and have outperformed conventional organic and inorganic bulk scintillators on several fronts. During Phase II, our plan is to continue refining these NC structures and related screening/growth techniques and demonstrate their ability to outperform even single crystal X-ray scintillators in terms of resolution, detection area, gain, and production cost. This will be achieved by creating NCs with optimal lengths and narrow size distribution and then incorporating them into polymer composites containing orderly arrangement of such structures at high packing densities. The orderly NC arrangement, which will be achieved by well-established low-cost solution-based self-assembly techniques, will dramatically enhance X-ray absorption and facilitate light channeling through the polymer matrix to the electronic sensors. Using such methods, it is possible to attain very long (tens of microns) vertically aligned NCs in a polymer matrix with inter- NC spacings (that can act as light channels) of only few nanometers, as opposed to the micron spacing limitations provided by conventional CsI and other single crystal (or bulk powder) scintillating structures. The low-cost solution processing methods employed in these systems will also enable both large-area and high resolution scintillators with significant cost reduction compared to conventional bulk and single crystal materials. In summary, these novel NC-based films will have significant applications in various types of radiation detection devices, and other biomedical imaging applications, enhancing their value to the NIH and to the molecular biology and medical communities as a whole. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The proposed nanomaterials will significantly improve the resolution and brightness of Xray- produced images compared to current state-of-the art. They will have applications in digital radiography, crystallography, and various medical imaging applications, enhancing their value to the NIH and to the molecular biology and medical communities as a whole.

Principal Investigator:

Christopher J. Summers
404-664-5008
chris@phosphortech.com

Business Contact:

Hisham Menkara
404-664-5008
hisham@phosphortech.com
Small Business Information at Submission:

PHOSPHORTECH
351 THORNTON RD, STE 130 LITHIA SPRINGS, GA 30122-4118

EIN/Tax ID: 158243731
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No