You are here

Multifunctional Scaffold Agitation Platform

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43GM105119-01
Agency Tracking Number: R43GM105119
Amount: $152,792.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NIGMS
Solicitation Number: PA12-088
Timeline
Solicitation Year: 2013
Award Year: 2013
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
130 N MAIN ST
BUTTE, MT -
United States
DUNS: 836287680
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 TODD MCADAMS
 (406) 497-5252
 tmcadams@resodyn.com
Business Contact
 LAWRENCE FARRAR
Phone: (406) 497-5252
Email: LCFarrar@resodyn.com
Research Institution
 Stub
Abstract

DESCRIPTION (provided by applicant): This Small Business Innovation Research Phase I project will develop a commercially-viable device that uses micro-scale acoustic streaming (low frequency sound energy) to deliver mixing to the interior of three-dimensional (3D) scaffolds used for tissue engineering and other applications. The enabling advantage of low frequency sound energy is the ability to generate micro-scale mixing in and around scaffolds that can enhance the movement of liquid, molecules, and oxygen within scaffolds without the need for pumps or a costly and inconvenient perfusion apparatus for each scaffold. Preliminary data shows that cells can successfully grow in the presence of the acoustic energy field. Nutrient supply issues and difficultiesin homogenously seeding dense tissue engineering scaffolds are issues that need to be overcome in order to successfully produce high quality, repeatable cell cultures in the complex 3D environments that are the mainstay of modern tissue engineering. Manypossible solutions to these problems have been examined, including the use of spinner flask, centrifugal, vacuum fixtures, or perfusion for cell seeding. The vision for the approach proposed here is to develop a single agitation platform on which multiplescaffolds can be mounted in well-plate fixtures to deliver similar benefits as those derived from the perfusion approach but without the significant time and capital investment inherent in the perfusion loop approach. When used at low intensities, the proposed device should be able to deliver benefits similar to a perfusion approach, but in a much simpler package. When used at higher intensities in the absence of cells, additional applications and benefits can be delivered in the form of much more rapid methods for the hydration, functionalization, and enzymatic degradation of scaffolds. The goal of this research proposal is to build a robust working prototype device and to evaluate its utility as a very simple solution for the enhancement of scaffold-basedcell cultures. The commercial applications of the device would be much broad within the field of tissue engineering, extending to the full range of tissues that have shown to be enhanced by more cumbersome perfusion flow-based systems, as well as to basicoperations such as hydrating, functionalizing, and digesting scaffolds. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: This Small Business Innovation Research Phase I project will develop and demonstrate a multifunctional Scaffold Agitation Platform that employs a novel agitation method in the form of low-frequency sound energy. By greatly enhance the penetration of liquids, molecules, and cells into the very small pores of natural and artificial scaffolds used for tissue engineering applications, the SAP will provide a low-cost, easy-to-use method of enhancing hydration, seeding, and cellular growth within scaffolds. Better culture performance and cost-savings without the use of complex pumps and tubing will translate to more affordable therapeutic products and better patient outcomes.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government