You are here

Neuroimaging tools for presurgical brain mapping

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41CA173976-01A1
Agency Tracking Number: R41CA173976
Amount: $272,918.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: NCI
Solicitation Number: PA12-089
Timeline
Solicitation Year: 2013
Award Year: 2013
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
890 Elm Grove Rd. Ste. 215
Elm Grove, WI 53122-
United States
DUNS: 190899638
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 EDGAR DEYOE
 (414) 456-4920
 deyoe@mcw.edu
Business Contact
 JAMES REUSS
Phone: (262) 754-3840
Email: jreuss@prismclinical.com
Research Institution
 MEDICAL COLLEGE OF WISCONSIN
 
MEDICAL COLLEGE OF WISCONSIN 8701 WATERTOWN PLANK RD
MILWAUKEE, WI 53226-3548
United States

 () -
 Nonprofit College or University
Abstract

DESCRIPTION (provided by applicant): The goal of this project is to develop functional magnetic resonance imaging (fMRI) tools to assist the diagnosis and treatment of human patients with a brain tumor or other operable pathology. The specific focus of this proposal is to produce a practical, clinic-ready suite of MR imaging methods, analyses and display tools to solve the number one impediment to routine use of fMRI for guiding brain surgery and radiation treatment: risk of brain damage due to the treatment itself. Currently, the primary clinical use of fMRI is to identify healthy brain tissue that might be damaged by surgery or radiation treatment and thereby cause an unintended neurological deficit such as partial blindness or paralysis. Neurosurgeons who use fMRI for this purpose have reported that it allows them to be more aggressive in removing the tumor because they don't have to guess where the healthy brain tissue is located. However, the success of using fMRI for this purpose depends on its abilityto reliably distinguish between healthy brain tissue and diseased tissue that can be removed without causing a deficit. Herein lies a critical problem. fMRI signals are not generated by the brain cells themselves but, rather, by localized changes in bloodflow and oxygenation that are triggered when the brain cells become active as the patient performs a sensory, motor or cognitive task. The cascade of cellular events that link changes in brain cell activity to changes in blood flow is complex and can be disrupted by a brain tumor or other disease process. Disrupting this cascade causes neurovascular uncoupling (NVU) and results in a localized loss of the fMRI signal even though nearby brain cells are still functional. If NVU is not detected, healthy brain tissue can be mistaken for diseased tissue and inadvertently resected or irradiated. This can result in treatment-induced deficits such as partial loss of vision or limb movement. Fortunately, there are two promising methods that can be used to detect NVU but they have not been fully tested with patients nor have they been developed into tools that are ready for routine clinical use and distribution to the health care community. Consequently, the specific goal of this project is to address this need through a collaborative effort between imaging scientists and physicians at the Medical College of Wisconsin, Johns Hopkins University and Prism Clinical Imaging, Inc. This Phase 1 STTR project will address the feasibility of combining the two most promising methods, testing the combined method with a small number of patients, and developing prototype software for acquisition, analysis and visualization of NVU-related data. Successful completion of this project will lead to a subsequent Phase 2 project that willfocus on testing a larger range of patients and pathologies and creating a commercial product ready for release to hospitals and clinics. It is anticipated that the proposed technology will have a significant impact on the use of fMRI for guiding brain surgery and on the acceptance of fMRI as standard of care for this purpose. 32 PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: Brain tumor surgery and radiation treatment are risky since healthy brain tissue can be inadvertently damaged by thetreatment itself. Advanced brain imaging can address this problem but needs to be refined and extended for this purpose. This project will solve this problem, thereby leading to better treatment outcomes for patients with brain tumors and other operable diseases.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government