You are here

New therapeutics for the treatment of Acinetobactor baumannii infections.

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41AI108196-01
Agency Tracking Number: R41AI108196
Amount: $300,000.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: NIAID
Solicitation Number: PA10-124
Timeline
Solicitation Year: 2013
Award Year: 2013
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
3805 OLD EASTON RD
DOYLESTOWN, PA 18902-
United States
DUNS: 828761002
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 ALLEN REITZ
 (215) 589-6435
 areitz@fc-cdci.com
Business Contact
 ALLEN REITX
Phone: (215) 589-6435
Email: areitz@fc-cdci.com
Research Institution
 UNIVERSITY OF PENNSYLVANIA
 
Office of Research Services 3451 Walnut Street P-221 Franklin Building
PHILADELPHIA, PA 19104-
United States

 () -
 Nonprofit College or University
Abstract

DESCRIPTION (provided by applicant): Acinetobacter are strictly aerobic, non-fermentative Gram-negative bacilli that are of major concern in human health, in particular the species Acinetobacter baumannii. They are responsible for clinically important infections that cause a wide variety of maladies including pneumonia, skin and wound infections, bacteremia and meningitis. In addition, A. baumannii biofilms have been implicated in cystic fibrosis, periodontitis and urinary tract infections, due to the bacteria's ability to colonize indwelling medical devices. The rise in antibiotic resistant A. baumannii has severely limited the therapeutic options for treatment, and it is widely recognized that new therapies are desperately needed which is the major goal ofthis STTR. Our laboratories at the University of Pennsylvania and RMH Sciences specialize in targeting the oxidative phosphorylation (OxPhos) system in new antibacterial drug discovery. The OxPhos system is the main pathway used by bacteria to produce energy in the form of ATP and is an essential process for bacterial survival. There are marked differences between the components of the bacterial OxPhos with those of mitochondria and low sequence homology between the two, suggesting that pathogen-specific therapy by this approach is possible. A high throughput screening campaign was conducted to identify A. baumannii OxPhos inhibitors. We have discovered multiple drug-like scaffolds from the HTS that selectively kill A. baumannii, with minimal inhibitory concentration (MIC) values as low as 8 mg/mL. We have identified the target of these compounds to be type 1 NADH dehydrogenase (NDH-1). In this grant, we at the Fox Chase Chemical Diversity Center, Inc. propose in Aim 1 to perform iterative medicinal chemistry to identify compounds with potent and selective antibacterial activity. Medicinal chemistry design is based upon analysis of the top hits from the HTS on which thorough literature review has been conducted, using calculated biophysical properties standard in the industry such as topological polar surface area and Log P as well as considerations of our ability to create new intellectual property. Aim 2 involves iterative in vitr biological testing assays to track biochemical and cellular activity includingsystematic assays to determine the exact molecular basis for the mechanism of action. Importantly, we will confirm the lack of effect in the OxPhos associated with mammalian mitochondria, as already demonstrated for our current hits. In Aim 3, we will utilize standard target validation and hit to lead in vitro and in vivo ADME properties including pharmacokinetic evaluation in mice, and obtain gt3 advanced leads from diverse chemotypes with acceptable ADME and PK properties. Our goal is to produce potent,selective and drug-like advanced leads with MIC values of lt 0.4 mg/mL (lt 0.1 mg/mL preferred). At the completion of this proposal, we will be well suited to transition to Phase II of the STTR program, involving the pre-clinical and clinical developmentactivities required to eventually validate the approach in patients, pursuant to eventual partnering with a major pharmaceutical company and commercialization. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The aim of this proposal is to advance a new class of antibacterial agents to treat Acinetobacter baumannii infections. Over the last 30 years resistance to the drugs used to treat these infections has risen dramatically. New drugs are therefore of urgent need.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government