You are here

SBIR Phase II: Mixed Oxide Sulfur-Tolerant Water Gas Shift Catalysts

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1230320
Agency Tracking Number: 1230320
Amount: $500,000.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: BC
Solicitation Number: N/A
Timeline
Solicitation Year: 2012
Award Year: 2012
Award Start Date (Proposal Award Date): 2012-09-01
Award End Date (Contract End Date): 2014-08-31
Small Business Information
1275 Kinnear Road
Columbus, OH 43212-0000
United States
DUNS: 831164822
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Chris Holt
 (614) 783-2396
 ctholt@phmatter.com
Business Contact
 Chris Holt
Phone: (614) 783-2396
Email: ctholt@phmatter.com
Research Institution
 Stub
Abstract

This Small Business Innovation Research Phase II project will focus on the refinement of catalyst compositions identified during the Phase I program for production of fuels from biomass. New catalyst materials are needed to make liquid fuels and hydrogen from biomass more economical and efficient. In this Phase II project a scalable synthesis method will be utilized to prepare 1kg/day batches of high surface area catalysts with proprietary additives to improve low temperature shift activity. During the Phase II research, pH Matter will demonstrate the performance of the novel catalyst compositions under additional customer-specific gas feed environments and demonstrate a method for scaling up the catalyst synthesis process for delivery to BTL system developers and commercial catalyst manufacturers. The end goal is production of catalysts and generation of performance data demonstrating that the catalyst can operate in the full range of contaminants found in biomass sources,reducing the cost and improving the efficiency of fuel production from biomass. The broader impact/commercial potential of this project is potentially quite large. The production of energy and liquid fuels from biomass will have a number of beneficial societal impacts. Biomass gasification processes are carbon neutral, since it uses C0 2 that was captured from plants; therefore, biomass gasification will replace energy production from fossil fuels, thus reducing greenhouse gas emissions. Unlike fuel crops, biomass can be garnered from second generation sources like waste products that have no use for human consumption, so the technology does not compete with food sources. Further,using biomass as a source of liquid fuel will reduce the dependence of our nation on foreign sources of energy. The technology developed and refined during the Phase II NSF SBIR program could have application to a wide range of other catalytic reactions as well. Potential applications include: lean burn diesel engine exhaust treatment,hydrocarbon reforming for fuel cells, electrode materials in fuel cells,and gas-to-liquid processes. Overall,the project will contribute novel results to the body of literature in catalysis and materials development.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government