You are here

Incoherent Fiber-Laser Array Pumped OPCPA Laser-Plasma Accelerator Driver

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-11ER90144
Agency Tracking Number: 97939
Amount: $149,856.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: 66 d
Solicitation Number: DE-FOA-0000413
Timeline
Solicitation Year: 2011
Award Year: 2011
Award Start Date (Proposal Award Date): 2011-06-17
Award End Date (Contract End Date): 2012-05-16
Small Business Information
251 Jackson Plaza Unit A1
Ann Arbor, MI -
United States
DUNS: 782263441
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Gaston Tudury
 Dr.
 (630) 234-9252
 gtudury@arborphotonics.com
Business Contact
 Michelle Stock
Title: Dr.
Phone: (734) 417-1079
Email: mstock@arborphotonics.com
Research Institution
 Stub
Abstract

So-called tabletop accelerators are a holy-grail of high energy/high field physics and, if developed, will spur a revolution in particle physics discoveries and also in medical treatments. This is because planned next-generation particle accelerators are still kilometers in size and billions of dollars to build and support, and therefore are only within reach of large research consortia as opposed to typical research Institutions or Universities. In order to address this gap in technology, laser plasma driven accelerators have been proposed and demonstrated to accelerate high charge, high-brightness bunches of electrons to more than 100 MeV, in less than 1 mm; these recent acceleration results have generated enormous international interest and stimulated investigations of laser-plasma acceleration as viable acceleration stages, particularly to address issues such as size and cost of the system and potential for scaling to higher repetition rates. In this Phase I SBIR proposal, the feasibility of a novel laser-based, high gradient particle accelerator will be advanced by investigating the specifications and availability of key system components. A transportable laser-based accelerator is described in which a large number of fiber lasers are combined and then used to pump an optical parametric chirped pulse amplifier (OPCPA) capable of generating high energy, coherent, ultra short pulses at high repetition rates. This technology holds the potential to one day make compact, tabletop-sized accelerators a reality, and to dramatically increase the rate of acceleration possible with traditional high energy particle accelerators without dramatic increases in machine dimensions. Compact, plasma wakefield, particle accelerators would be significantly more economical than current RF-based machines, putting them within reach of a much larger range of university and institutional research labs for basic research and medical applications. Furthermore, the constituent fiber lasers used to pump the OPCPA scheme can become stand-alone products for use in a variety material processing tasks, spanning microelectronic and solar device processing

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government