You are here

SBIR Phase I: Advanced Spatial Light Modulator for Microscopy

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1046275
Agency Tracking Number: 1046275
Amount: $145,614.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: BC
Solicitation Number: N/A
Timeline
Solicitation Year: 2010
Award Year: 2011
Award Start Date (Proposal Award Date): 2011-01-01
Award End Date (Contract End Date): 2011-12-31
Small Business Information
450 Courtney Way Unit 107
Lafayette, CO 80026-8878
United States
DUNS: 602673188
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Kipp Bauchert
 (303) 604-0077
 kipp@bnonlinear.com
Business Contact
 Kipp Bauchert
Title: MS
Phone: (303) 604-0077
Email: kipp@bnonlinear.com
Research Institution
 Stub
Abstract

This Small Business Innovation Research (SBIR) Phase I project is focused on technology to improve microscopy through the development of an advanced spatial light modulator (SLM). Improved microscopy is required for many different applications, but perhaps the most compelling is the better understanding cellular physiology. The inability to view dynamic, live processes with high resolution limits the understanding of cellular division, cellular signaling, the contraction and relaxation of muscle cells, and the absorption of nutrients by epithelial cells. A better understanding of these processes could lead to many medical improvements. Recent advances in microscopy involve the integration of SLMs to improve imaging capabilities, e.g. fluorescence holographic microscopy, double?]helix photoactivated localization microscopy, and instantaneous spatial light interference microscopy. Most of this work has been performed utilizing display chips. Much better results may be obtained with an SLM designed for microscopy. One problem utilizing commercially available liquid crystal SLMs is poor optical efficiency. Most of the loss is due to the inability of the liquid crystal to modulate phase for any polarization state, forcing the elimination of half of the light. The proposed project will develop a technique that would enable an SLM to phase modulate any random polarization state, thereby more than doubling the light efficiency. The broader impact/commercial potential of this project will result in improved microscopy resolution, which could in turn lead to better scientific understanding in any field that currently utilizes light microscopy. It is envisioned that the majority of improvements will occur in the cellular biology field due mainly to the current difficulty in viewing such processes as live cellular division. However, other areas of improvement would likely include such applications as holographic optical trapping and even telescopes, providing better vision through our turbulent atmosphere. The commercial impacts of this proposed project will occur in multiple areas and different points in time. It is anticipated that the initial market will be scientific research and development community using these advanced spatial light modulators to develop many new applications. Once a promising application has been developed, then instrument companies will begin to integrate these SLMs into new microscope systems for the research and development community, as well as medical laboratories. The proposed advanced SLM could result in driving an entirely new test and measurement equipment industry.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government