You are here

Novel Zeolite Photocatalyst for Reductive Dechlorination of Chlorinated VOCs

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43ES016499-01
Agency Tracking Number: ES016499
Amount: $102,381.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Timeline
Solicitation Year: 2008
Award Year: 2008
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
ZEOMATRIX, LLC 20 GODFREY DR
ORONO, ME 04473
United States
DUNS: 625371450
HUBZone Owned: No
Woman Owned: Yes
Socially and Economically Disadvantaged: No
Principal Investigator
 () -
Business Contact
Phone: (207) 299-3336
Email: smackay@zmtrx.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): Zeomatrix, a small business, is proposing to research and develop a remediation technology for chlorinated volatile organic carbons (CVOCs). CVOCs are ubiquitous groundwater pollutants. Left on their own they persist in
nature for over 100 years. Most are toxic to humans, and some (including trichloroethylene) have been linked to cancer. A recently completed 17 year study by the United States Geological Survey found that chlorinated VOCs are present in nearly every aquif
er in the United States. It is estimated that full scale remediation of these compounds in groundwater will cost in excess of 200 billion. The product being developed is a visible light photocatalyst which will promote the rapid reduction of CVOC compound
s to less toxic materials. Current commercial photocatalysts are employed as oxidative catalysts, and thus they are less efficient at remediation in the presence of dissolved organic matter, a common component of groundwater. Zeomatrix utilizes high throug
hput screening methods to rapidly and cost effectively develop new photocatalysts. The Phase I research will be performed using custom-designed parallel photocatalyst screening instrumentation in order to evaluate a large number of candidate materials and
identify the optimal reductive photocatalyst. The research will be focused on the following specific aims: one, to synthesize an array of catalyst support geometries based on design of experiments (DoE) protocol and using an automated deposition system cus
tom-engineered by Zeomatrix to deposit various metal/metal oxide combinations and then screen for reductive photocatalytic activity under visible light; and, two, to screen the reductive photocatalysts selected from the initial screening experiments for ac
tivity versus chosen test compounds (trichloroethylene, trichloroethane), under a range of experimental conditions (pH, ionic strength, dissolve organic content). Selection of the optimal photocatalyst will be based on rapid degradation kinetics (turn over
frequency), and efficacy under adverse conditions (high ionic strength, pH extremes, and high dissolved organic content). The results of the Phase I research will be used to determine the feasibility of applying the selected photocatalyst for the remediat
ion of CVOCs. Phase II studies would be performed to further optimize the photocatalyst, and to perform a large scale pilot study on actual polluted groundwater. The combination of rapid kinetics with the use of low cost visible light would make this an at
tractive remediation option to address the extensive problem of CVOC contamination. The goal of this research is the development of a novel remediation technology for the break down of chlorinated volatile organic carbons in water. Chlorinated vola
tile organic carbons are found in nearly every aquifer in the US. Left on their own they persist in nature for over 100 years. Most are toxic to humans, and they accumulate in fatty tissue making them a danger to human health even at low levels. Some have
been linked to cancer and over twenty are currently regulated in public water supplies by the United States Environmental Protection Agency.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government