You are here

SBIR Phase II:Low Cost High Quality Nonlinear Optical Crystals for Laser Light Sources for Miniature Projectors

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1026196
Agency Tracking Number: 0911261
Amount: $493,883.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: EL
Solicitation Number: NSF 08-548
Timeline
Solicitation Year: 2010
Award Year: 2010
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
3350 Scott Blvd
Santa Clara, CA 95054
United States
DUNS: 782358365
HUBZone Owned: Yes
Woman Owned: Yes
Socially and Economically Disadvantaged: No
Principal Investigator
 Gisele Maxwell
 (530) 378-0395
 gmaxwell@shastacrystals.com
Business Contact
 Gisele Maxwell
Phone: (530) 378-0395
Email: gmaxwell@shastacrystals.com
Research Institution
N/A
Abstract

This Small Business Innovation Research (SBIR) Phase II project will demonstrate how to reduce the cost of manufacturing magnesium-doped lithium niobate (Mg:LiNbO3) crystals by more than an order of magnitude. Frequency-doubling crystals, such as Mg:LiNbO3 can convert 1064-nm light from an infrared laser to 532-nm (green) light. However, LiNbO3 crystals made by the conventional Czochralski technique typically cost $800 each, presenting an economic challenge for consumer applications. The approach is to grow crystals by the laser heated pedestal growth method with a novel afterheater and to pole them in situ. Phase II, enables the development of manufacturing capability for these crystals at a rate of 100,000 crystals per year at a cost of less than $22 each. In Phase III, The manufacturing capacity will be increased to 1,000,000 crystals per year and the manufacturing costs reduced below $8. The proposed cost reduction will enable manufacturers of picoprojectors to increase the brightness of their products by integrating lasers as the light sources instead of LEDs. The technical objectives are to optimize the density of Mg:LiNbO3 ceramic feedstock rods, to increase the manufacturing throughput by optimizing manufacturing yield and automating the growth apparatus.
The broader impact/commercial potential of this project is to enhance scientific and technical understanding by demonstrating a) a novel method of growing crystals with lower cost, higher speeds, and greater purity, and b) a way to pole LiNbO3 crystals in situ at lower cost. The project will generate a strong economic impact because many types of handheld consumer electronics devices (cell phones, PDAs, iPods, game terminals, etc.) contain digital data that require visual displays. Picoprojectors can display the content of handheld devices in large formats, but their LED illumination sources can?t generate images with enough brightness to satisfy customers. Laser illumination sources can solve the brightness problem, but lasers are too expensive, primarily because of the cost of the frequency doubling crystals. This project will reduce the cost of these crystals and may thereby enable the picoprojector industry to realize its optimistic growth scenario ($3.6 billion in sales in 2014) rather than its conservative growth scenario ($901 million in sales in 2014). An intern, a science student who is a member of an under-represented group in the nation?s science and engineering enterprise, will be hired to assist with Phase II research.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government