You are here

High-Frequency, Low-Noise Nitride-Based Power Transistors Grown on Bulk III-N

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NAS3-03019
Agency Tracking Number: 023732
Amount: $69,939.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 2003
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
7620 Executive Drive
Eden Prairie, MN 55344
United States
DUNS: N/A
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Amir Dabiran
 Principal Investigator
 (952) 934-2100
 dabiran@svta.com
Business Contact
 Jane Marks
Title: Project Manager
Phone: (952) 934-2100
Email: marks@svta.com
Research Institution
N/A
Abstract

One of the main issues for III-nitride growth is the lack of a suitable native substrate. Growth on foreign substrates such as sapphire or SiC results in nitride material with a high density of defects due to large mismatches in lattice constant and thermal expansion. Nonetheless, nitride devices grown on these substrates have demonstrated optical and electronic properties that are practically unmatched by other material systems. In particular, the AlGaN/GaN high electron mobility transistors (HEMTs) constitute a leading candidate for simultaneously realizing ultrahigh-frequency low-noise amplifiers and power amplifiers. Here, we propose to use high quality bulk GaN and AlN substrates for substantial improvements in the operation of AlGaN/GaN HEMTs. We also propose a method of isolating the n-type substrate from the active layer. In this way, we take advantage of the reduced thermal and lattice mismatch, lower density of treading dislocations, and improved thermal conductance to significantly improve the dc and RF operation of these devices. Some projected HEMT device parameters to achieve are a current density > 1.5A/mm, extrinsic transconductance values > 400 mS/mm, fmax > 200 GHz, and power density > 10 W/mm at 40 GHz.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government