You are here

Cooling Suit for First Responders

Award Information
Agency: Department of Health and Human Services
Branch: Centers for Disease Control and Prevention
Contract: 1R43OH009349-01
Agency Tracking Number: OH009349
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 2007
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
TDA RESEARCH, INC. 12345 W 52ND AVE
WHEAT RIDGE, CO 80033
United States
DUNS: 181947730
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 GIRISH SRINIVAS
 (303) 940-2321
 GSRINIVAS@TDA.COM
Business Contact
 JOHN WRIGHT
Phone: () -
Email: krhodus@tda.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): When responding to a chemical spill or other hazardous cleanup operation, first responders must frequently wear a level A hazardous materials suit. These suits protect the first responder from chemical exposure by compl
etely sealing the wearer against external vapors and liquids. Because the suits are sealed, a fresh air supply is required which is typically provided by a self-contained breathing apparatus (SCBA). In total, the SCBA/impermeable suit provides contaminant
free air and a barrier to the chemical hazard. Unfortunately, because the suits are sealed, they quickly get very hot and humid. Given the fact that a first responder can be in the suit from 30-60 min, overheating is not just a source of discomfort, but is
a real hazard to the health of the first responder. In addition, perspiration condenses on the inside of the faceplate obscuring vision, and the heat/humidity buildup in the suit severely limits the time that can be spent in the suit without risking heat
exhaustion. TDA Research, Inc. (TDA) proposes to develop a lightweight, portable system that will both cool and dehumidify the air circulated through a hazmat suit. TDA will use a heat exchanger to transfer heat from the inside of the suit to the d
irty environment, but keeps the clean and contaminated air streams separate. The dry (about 15% RH) clean air is cooled to about 770F and returned to the first responder. The cool, dry air is distributed to the hands, head, and feet within the Personal Pro
tective Equipment (PPE) with a lightweight fabric, internal duct system. In the Phase I project, we will design and build a test heat exchanger to demonstrate our concept. In addition, we will perform a system analysis using a 2D software and a finite elem
ent analysis. The design analysis will form the basis of the prototype fabrication in the Phase II project.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government