You are here

Practical Conjugate CFD Heat Transfer Design Methods for Complex Turbine Components

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA8650-08-M-2834
Agency Tracking Number: F073-054-0314
Amount: $99,985.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: AF073-054
Solicitation Number: 2007.3
Timeline
Solicitation Year: 2007
Award Year: 2008
Award Start Date (Proposal Award Date): 2007-12-12
Award End Date (Contract End Date): 2008-09-12
Small Business Information
1701 Military Trail Suite 110
Jupiter, FL 33458
United States
DUNS: 048159342
HUBZone Owned: No
Woman Owned: Yes
Socially and Economically Disadvantaged: No
Principal Investigator
 James Downs
 Program Manager
 (561) 427-6250
 jdowns@fttinc.com
Business Contact
 Lloyd Mazer
Title: Contracts Manager
Phone: (561) 427-6337
Email: lmazer@fttinc.com
Research Institution
N/A
Abstract

Modern cooled gas turbine components are typically characterized by small-scale features (turbulators, impingement holes, and film cooling holes) and complex physics (boundary layer transition, separated shear layers from turbulators, and unsteady mixing of film coolant into the mainstream). The geometric complexity and computational rigor required to resolve the physics yields conjugate CFD/heat transfer analysis durations that are not practical for a target component design iteration cycle of ~4 weeks. Consequently, current technology limits use of conjugate CFD to sub-models models of reduced physical rigor (RANS), or simplified cooling schemes (i.e.: no film holes). Component designers require accurate prediction of the stress/temperature field over the entire component; accordingly, industry needs a method of physically rigorous modeling (DES/LES) in critical regions. For non-critical regions, the proposed conjugate CFD/thermal design methodology omits the small scale features (impingement holes, film holes, or turbulators) from the mesh, and instead meshes only the large-scale flowpath and internal cooling passages. Grid extraneous source terms (mass/momentum/energy) are used to capture the effect of small-scale features in non-critical regions to keep the analysis time practical. The novel aspect of this approach is the manner in which source terms are created, controlled, and integrated into the converging full-scale conjugate solution.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government