You are here

Software Guided Localization of the Subthalamic Nucleus During DBS Surgeries

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43NS064640-01A2
Agency Tracking Number: NS064640
Amount: $202,186.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NINDS
Solicitation Number: PHS2010-2
Timeline
Solicitation Year: 2010
Award Year: 2010
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
FHC, INC. 1201 MAIN ST
BOWDOIN, ME 04287
United States
DUNS: 108179458
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 LEE MARGOLIN
 (207) 666-8190
 LMARGOLIN@FH-CO.COM
Business Contact
 DAVID MARGOLIN
Phone: (207) 666-8190
Email: lmargolin@fh-co.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective treatment of Parkinson disease. Because the STN is small (9 X 7 X 4 mm) and it is not well visible using conventional imaging techniques, microelectrode recordings (MER) is used to ensure accurate detection of the STN borders. Commonly used MER techniques are subjective, time consuming and require an experienced electrophysiologist. Therefore, there is an urgent need to develop new methodologies for accurate and objective detection of the subthalamic nucleus during microelectrographic recordings. In this proposal we will utilize the multi-unit spiking activity (MSA) for detection of the STN borders. The MSA is characteristically elevated within the STN that facilitates unambiguous delineation of both the dorsal and ventral STN borders. The proposed approach enables exact and uniform placement of the stimulation electrodes that can improve outcome of the DBS surgeries. The proposed method is straightforward and has the potential to be used widely in clinical practice. The proposed project will involve work to translate the standalone, off-line MSA analysis into a real time analytical tool that is integrated into a currently available clinical electrophysiological workstation (FHC's Guideline 4000) for use in current functional neurosurgical procedures. PUBLIC HEALTH RELEVANCE: Project Narrative Deep brain stimulation of the subthalamic nucleus using electric current is an effective treatment of Parkinson disease (1-2). The accurate and reliable methods for detection of the target of stimulation are lacking. In this project, we implement a method for target detection based on an activity of the cells in the target (22) that enables accurate placement of the stimulating electrode. This approach can be widely used in clinical practice and it can improve outcomes of deep brain stimulation surgeries.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government