You are here

Rapid Combustion Driven High Pressure Powder Compaction of Refractory Alloys and Dispersion Strengthened Composites for High Temperature Applications

Award Information
Agency: Department of Defense
Branch: Missile Defense Agency
Contract: HQ0006-10-C-7395
Agency Tracking Number: B09B-002-0037
Amount: $99,955.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: MDA09-T002
Solicitation Number: 2009.B
Timeline
Solicitation Year: 2009
Award Year: 2010
Award Start Date (Proposal Award Date): 2010-05-03
Award End Date (Contract End Date): 2010-11-02
Small Business Information
9441 Innovation Drive
Manassas, VA 20110
United States
DUNS: 809250405
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Karthik Nagarathnam
 Senior Materials Scientist
 (703) 369-5552
 karthik@utronkinetics.com
Business Contact
 Mary Rutherford
Title: Contracts Adminstrator
Phone: (703) 369-5552
Email: maryr@utroninc.com
Research Institution
 Southern Research
 Nancy Benjamin
 
757 Tom Martin Drive
Birmingham, AL 35211
United States

 (205) 581-2103
 Nonprofit College or University
Abstract

This Phase I STTR effort will be focused on fabricating and scientifically characterizing Mo/Re (59 Mo-41 Re), and W-25Re alloys with other alloying additions such as small % of dispersion strengthening materials such as zirconia, hafnia, tungsten carbide, Hafnium (Hf), Zirconium, TaC, Hf-based carbides in select geometrical shapes using UTRON Kinetics''s innovative, and cost-effective Combustion Driven Powder Compaction (CDC) at higher pressures (e.g., up to 85-150 tsi). The samples will be fabricated using commercially available fine powders and select geometries to be fabricated include 1 inch diameter cylindrical disks, 3.5 inch long tensile dogbones as well as small scale near net shape geometry such as hollow cylinder valves using the existing tooling. We will develop the key CDC process optimization for various proposed alloys, suitable sintering response in hydrogen or suitable environment (e.g., vacuum/hydrogen sintering), density changes, geometry/surface/part quality, select mechanical tensile properties at room and elevated temperatures (e.g., 3500 F or higher in consulation with MDA sponsor and subcontractors such as ATK/SORI), microstructures and microchemistry. Based on the optimum process conditions, representative small scale hollow valve/liner (Phase I) and other complex high temperature components will also be fabricated using a special die/punch assembly and scaling up in Phase II. Further process optimization on the most promising W-Re and Mo/Re alloys or the dispersion strengthened alloy composites and rapid manufacturing strategies will be established and continued in Phase II and Phase III.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government