You are here

A High Fidelity Computational Tool for Modeling Thermal Vent Systems in Cryogenic Tanks

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX09CD32P
Agency Tracking Number: 084481
Amount: $99,979.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: X7.01
Solicitation Number: N/A
Timeline
Solicitation Year: 2008
Award Year: 2009
Award Start Date (Proposal Award Date): 2009-01-22
Award End Date (Contract End Date): 2009-07-22
Small Business Information
6210 Keller's Church Road
Pipersville, PA 18947-1020
United States
DUNS: 929950012
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Ashvin Hosangadi
 Principal Investigator
 (215) 766-1520
 hosangad@craft-tech.com
Business Contact
 Paula Schachter
Title: Business Official
Phone: (215) 766-1520
Email: schachte@craft-tech.com
Research Institution
N/A
Abstract

Control and management of cryogenic propellant tank pressures in low gravity is an important technical challenge to overcome for future long duration space missions. Heat leaking into the propellant tanks leads to self-pressurization of the tank due to vaporization. Advanced techniques such as thermodynamic vent systems (TVS) are currently being designed for low-gravity space systems. However, these systems are more complex to analyze and system level tools based on lumped, homogeneous models are inadequate for determining sensitivities to multi-dimensional fluid transport and dispersed multi-phase effects. The innovation proposed here is a comprehensive, CFD framework to support analyses of cryogenic tank management systems that will incorporate both real-fluid equations of state for cryogenic fluid mixtures with rigorous fluid property definitions, as well as an advanced dispersed phase spray model that permits non-equilibrium drag and heat transfer with the surrounding continuum fluid. The proposed effort will evaluate various sub-models for the vaporization/condensation of the cryogenic fluid droplets in an environment that includes a mixture of vapor and non-condensable gas. This technology will impact cryogenic systems for long duration space exploration activities.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government