You are here

Quantum Dot Mid-Wave Infrared Focal Plane Array

Description:

OBJECTIVE: Develop a mid-wave infrared (MWIR) focal plan array (FPA) using quantum dots for next-generation night vision. DESCRIPTION: Historically, night vision has provided the United States Armed Forces with an asymmetric tactical advantage in combat operations. However, the tradeoffs of low sensitivity (microbolometers), high power consumption (active cooling), or specialized consumables (liquid-nitrogen cooled HgCdTe) are a major technological hurdle to achieving low-power, low-cost and portable thermal night vision imaging. Quantum dots have seen gradual improvements in reducing the band gap in recent years, making a highly-efficient and lower-cost detector material within the thermal infrared (IR) range potentially realizable [1]. High-efficiency of light detection from quantum dots results from the large extinction coefficient induced by quantum confinement [2], creating high-sensitivity without the need for external cooling, and thus reducing weight, size and power consumption. Current epitaxially-grown IR camera detectors cost>$10,000, while the projected cost of quantum dot-enabled detectors is $100, which could enable wider deployment of night vision technology to warfighters as well as low-power surveillance units. Beyond decreased detector cost, quantum dots may be amenable to facile fabrication techniques, such as spin coating, which could further decrease device costs [3]. Significant technical and market challenges exist in transitioning these recent, laboratory-quality quantum dots into device-ready materials that can be fabricated into focal plane arrays; material quality must be improved to enhance intrinsic and extrinsic quantum efficiency; manufacturing scalability and batch-to-batch consistency must be demonstrated; integrating wet solution processing methods with the control and readout structure; fabrication of a detector of comparable size to a commercial focal plane array. Proposers are free to formulate any approach that will contribute to the goal of making a low-cost, high-sensitivity MWIR FPA based on quantum dots. PHASE I: Develop a design plan to fabricate and incorporate quantum dots into a focal plane array. The device must conform in size, shape and power requirements to existing commercial infrared focal plane array. Characterize the expected performance of this focal plane array including spectral sensitivity, resolution and projected cost. Show the feasibility of one or more critical elements of this approach through a lab demonstration. PHASE I deliverables will include a design review simulating device performance and a report presenting plans for PHASE II. PHASE II: Construct and demonstrate the operation of a prototype quantum dot focal plane array validating the device performance outlined in PHASE I. The Transition Readiness Level to be reached is 5: Component and/or bread-board validation in relevant environment. PHASE III: High-sensitivity quantum dot-based solutions will enable widespread deployment of night vision sensors across many platforms including small UAVs, helmet-mounted sensors, night vision goggles, security cameras, guided missile platforms and personnel vehicles. These low cost sensors will help maintain a tactical nighttime operations advantage. Commercial applications include the development of low-cost infrared cameras for private security and automotive applications.
US Flag An Official Website of the United States Government